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bstract

Frequently transportation engineers are required to make difficult safety investment decisions in the face of uncertainty concerning the cost-
ffectiveness of different countermeasures. For certain types of highway–railway grade crossings, this problem is further aggravated due to the
ack of observed before and after collision data that reflects the impact of specific countermeasures. This study proposes a Bayesian data fusion

ethod as an attempt to overcome these challenges. In this framework, we make use of previous research findings on the effectiveness of a given
ountermeasure, which could vary by jurisdictions and operating conditions to obtain a priori inference on its expected effects. We then use locally
alibrated models, which are valid for a specific jurisdiction, to develop the current best estimates regarding the countermeasure effects. By using
Bayesian framework, these two sources are integrated to obtain the posterior distribution of the countermeasure effectiveness. As a result, the

utputs provide information not only of the expected collision response to a specific countermeasure but also its variance and corresponding
robability distribution for a range of likely values. Examples from Canadian highway–railway grade crossing data are used to illustrate the
roposed methodology and the specific effects of prior knowledge and data likelihood on the combined estimates of countermeasure effects.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

Laughland et al. (1975) introduced the concept of colli-
ion modification factor (CMF) to reflect the safety benefits
ssociated with different countermeasures and to represent the
xpected changes in collisions resulting from their introduction.
he CMF can be expressed simply as the ratio of the expected

or observed) number of collisions after the countermeasure is
ntroduced at a given site to the expected number before its intro-
uction.

The FHWA developed a series of CMF for two-lane rural
ighways (Harwood et al., 2000; Zegeer et al., 1992). The forth-

oming US Highway Safety Manual will provide a series of
MF to reflect the effect of different design and operational

trategies applied to highways (Hughes et al., 2004; Harkey,
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005). In the highway–railway grade crossing field, the term
MF has not been used extensively. Many researchers have pre-

erred to use the expected reduction in collisions resulting from a
iven safety intervention (Farr, 1987; FRA, 2002; Saccomanno
nd Lai, 2005). While these two terms are generally equivalent,
e will use CMF to be consistent with the convention of road

afety research.
The estimation of CMF requires a sound and accurate esti-

ate of the expected number of collisions for a specific crossing
before and after” the introduction of a given countermeasure.
ver the past two decades, a number of approaches have been

mployed for predicting collisions and estimating the effective-
ess of countermeasures; the most popular being cross-sectional
nd before-and-after models.

Saccomanno and Lai (2005) suggested that there are a number
f unresolved statistical issues inherent in conventional single-

tage cross-sectional models, including variable co-linearity,
isspecification of inputs, failure to consider higher-order inter-

ctions, treatment selection biases, and regression-to-the-mean,
tc.
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In before–after models, two types of approaches have been
dopted: naı̈ve and Empirical Bayesian (EB) models. The EB
efore-and-after models were introduced to resolve many of
he “regression-to-the-mean (RTM)” biases associated with the
aı̈ve approach. An in-depth discussion on this issue is provided
y Abbess et al. (1981), Hauer and Persaud (1987), and Wright
t al. (1988) and Gan et al. (2005).

While EB before and after models are expected to reduce
uch of the RTM bias inherent in the conventional naı̈ve

pproach, Lord (2006) and Park and Saccomanno (in press)
rgue that these types of models fail to reflect other biases
ntroduced by the rarity of the event being considered. Grade
rossing collision data is normally plagued by “too many zero
eported collisions”, and this places special restrictions on
he use of the EB method for predicting collisions at specific
rade crossings based on a limited time interval over which
bservations are obtained.

As discussed by Melcher et al. (2001), even though numer-
us data and methodological issues yield inconsistencies of
esults regarding the effect of different countermeasures, pre-
ious model results may still be useful. Conducting new studies
or every single countermeasure of specific interest in resolving
pecific local problems is impractical. The challenge posed by

elcher is “not to throw these estimates out, but rather to system-
tically and objectively integrate relevant findings from different
ources to provide a comprehensive appreciation of countermea-
ure effects applied to different transportation safety problems
nd locations”.

In summary, regardless of the model adopted a significant
egree of bias in the estimates of countermeasure effects can be
ntroduced. This is due to a number of reasons, including:

Rarity and randomness of collisions.
Lack of adequate statistical controls or misspecification of
factors.
Complex co-linearity issues among variables.
Treatment selection biases (e.g. the RTM problem).
Data aggregation.
Data reporting biases.

In light of these biases, in this paper we have taken the
iew that countermeasure effects can best be treated as ran-
om variables and their distributions should be obtained for-
ally by integrating prior distributions with location-specific

ata.
This paper has four basic objectives:

1) Identify and provide estimates of countermeasure effects as
reported in the literature from different sources or studies.
This serves to provide a “prior” belief on the nature of the
effects as obtained from these studies.
2) Introduce a formal data fusion method for integrating esti-
mates of countermeasure effects from previous studies (1)
with those from in-depth data analysis for the region of
interest (in this case grade crossing collision data from the
Canadian railway network).
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3) Integrate formal treatment of uncertainty in the estimates of
countermeasure effects.

4) Investigate the effectiveness of selected countermeasures as
applied to a given crossing with a mix of relevant attributes.
In this paper, we illustrate the proposed approach using two
types of countermeasures: elimination of whistle prohibition
and upgrading of warning devices.

. Bayesian data fusion

This study proposes a Bayesian data fusion method for
ombining countermeasure effects from different independent
ources with estimates obtained from a formal analysis of the
rade crossing data. The proposed approach is similar to that
uggested by El Faouzi (2006), Melcher et al. (2001) and
ashington and Oh (2006), but different in how prior knowledge

nd data likelihood functions are developed.
In this paper, our aim is to obtain “posterior” estimates of

he probability of the effect induced by a given countermeasure
pplied to a specific crossing i with a given mix of attributes.
he posterior expression is of the form (Migon and Gamerman,
999; Lee, 2004):

i(θ|x) ∝ Pi(θ)Pi(x|θ) (1)

here θ is the countermeasure effect (CMF) for a specific cross-
ng; x the estimate from Canadian collision prediction models;
i(θ) the prior probabilities of θ from past studies; Pi(x|θ) the
robability of observing the sample data given that a statement
bout the value of a parameter is true (i.e. objective or current
est knowledge); Pi(θ|x) the posterior probability of θ give x.

Eq. (1) assumes that the effect of a given countermeasure is
est treated as a random variable with a unique probability dis-
ribution. Since these estimates are obtained from independent
ources and are commonly empirical in nature, we assume that
or a given crossing they are normally distributed with a given
ean and a variance. As noted by Lee (2004), the observations
hich have a built-in estimation error are likely to reflect a nor-
al distribution according to the central limit theorem.
If the distribution of multiple source estimates on the pri-

rs and data likelihoods are normal the posterior estimates are
lso normal. Note that this normal distribution assumption is
urely for computational convenience and other distributions
re equally applicable with the proposed data fusion method.
he use of other distributions may require more computation-
lly intensive procedures such as, Markov Chains Monte Carlo
MCMC) techniques. Similar to Washington and Oh (2006),
ore flexible beta distribution, which can explain the non-

ymmetric nature of countermeasure effects, is also considered
n this study in obtaining the posterior probability distribution
or a given countermeasure effect.

.1. Prior and data likelihood distributions
As noted above from Melcher et al. (2001) estimates of coun-
ermeasure effects based on previous studies represent a “first
rder a priori” belief concerning their values in the absence of
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formal data analysis. Since each source is assumed to yield a
eparate “independent” estimate of the effect, these estimates
an be represented by a unique “a priori” probability distri-
ution. In this paper, we assume historical knowledge from a
umber of previous studies regarding similar countermeasures
ased on different jurisdictions. Many of these sources are based
n research involving US data. In this paper, we have assumed
hat the Canadian and US experience are close enough to justify
he assertion that countermeasure effects come from the same
tatistical population.

While prior estimates are assumed to be independent, their
ccuracy is subject to the reliability and strength of the method
dopted for predicting collisions. Obviously, some methods
mprove on the shortcomings of other methods, and these would
eed to be given higher weights when obtaining a “combined”
priori effect.

In this research, we follow a similar approach to that adopted
y Harkey (2005) and Washington and Oh (2006) to establish
he relative weights of countermeasure effects based on the per-
eived merits of different model types. In general, we obtained
he relative study weight (i.e. Wij in Eq. (2)) as the inverse rank-
ng of the level of certainty summarized in Table 1 for different
ypes of analysis methods.

The mean combined countermeasure effect from previous
tudies is obtained using a weighted average expression of the
orm:

j =
∑

WijCMFij∑
Wij

(2)

here CMFij is the effectiveness of countermeasure j in level of
ertainty i; Wij the relative study weight for countermeasure j in
evel of certainty i; μj is the weighted average effectiveness of
ountermeasure j from all available sources.

To obtain the prior distributions for countermeasure effects,
e need to obtain the variance as well as the mean associated
ith this effect. Estimates of the mean are routinely provided in

he various sources. Unfortunately, estimates of CMF variance
end to be unavailable since many sources fail to provide empir-
cal estimates of variance for different countermeasure effects.

In the absence of specific information on countermeasure
MF variance for a given prior source, we have suggested the

ollowing five step procedure:
1) Obtain the mean countermeasure effect (μj) as well as the
standard deviation (σj) for countermeasure j from all sources
that provide these two pieces of information.

(

able 1
elative weight based on study method

evel of certainty (i) Brief description of study methodology

. High Empirical Bayesian (EB) before–after models wit

. Medium–High Sound before–after (but not EB before–after) or c
judgment. Combination of study results using rigo

. Medium–Low Cross-sectional models with controlling for other

. Low Before–after or cross-sectional models in which m
and Prevention 39 (2007) 406–416

2) Estimate the “coefficient of variation” for countermeasure j
using an expression of the form:

CVj = σj

μj

100 (3)

where σj is the standard deviation of the countermeasure j;
μj the CMF of the countermeasure j; CVj is the coefficient
of variation for the countermeasure j.

3) Obtain “average CV” for the countermeasures in the same
level of certainty i (as per Table 1).

4) Apply “average CV” obtained from the method being used
regardless of type of countermeasure and estimate its asso-
ciated standard deviation for the countermeasure by using
Eq. (3).

5) Assign relative study weights in Table 1 to the individual
countermeasure and combine its estimated standard devi-
ation to obtain weighted average standard deviation for a
specific countermeasure j based on the Eq. (4).

j =
∑

Wijσij∑
Wij

(4)

here σij is the standard deviation of countermeasure j in level of
ertainty i; Wi the relative study weight for countermeasure j in
evel of certainty i; σj is the weighted average standard deviation
f countermeasure j from all available sources.

For the purpose of illustration, a numerical example of
pproximating standard deviation for a selected countermeasure
i.e. upgrading from signboards to flashing lights) is provided as
ollows. For this countermeasure, three previous studies, that
s, Morrissey (1980), Eck and Halkias (1985) and Farr and
itz (1985), have provided estimates of the mean and standard
eviance, as given in Table 2. The following steps are taken to
stimate the mean and standard of CMF for the particular cross-
ng of our analysis:

1) By applying Eq. (3), for a given CV calculation the follow-
ing example calculations were carried out for three different
sources. From Morrissey (1980), CV was estimated as 11.43
(=0.04/0.35 × 100). The CV was estimated to be 5.16 and
7.97 from Eck and Halkias (1985) and Farr and Hitz (1985),
respectively. The average CV from these sources was cal-
culated as 8.19 [=(11.43 + 5.16 + 7.97)/3].
2) By applying this average CV to the other six studies avail-
able for the same level of certainty, we can approximate
standard deviation (τ) for these studies. For instance, the
Alaska State DOT reported a mean CMF value of 0.25

Relative study
weight (Wi)

h proper application 1.00
ross-sectional models with rigorous expert
rous Meta-analysis

0.50

factors statistically or naı̈ve before–after models 0.33
odeling technique were questionable 0.25
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Table 2
Estimated Priors for Improvement from Signboards to Flashing Lights

Level of certainty μ τ CV Literature

Medium–Low (0.33)a 0.35 0.0400 11.43 Morrissey (1980)
0.31 0.0160 5.16 Eck and Halkias (1985)
0.29 0.0231 7.97 Farr and Hitz (1985)
0.25 0.0205 8.19 Alaska Stateb

0.62 0.0507 8.19 Arizona Stateb

0.23 0.0188 8.19 Idaho Stateb

0.50 0.0409 8.19 Iowa Stateb

0.35 0.0286 8.19 Kentucky Statec

0.35 0.0286 8.19 Missouri Stateb
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a Relative Study Weight.
b Gan et al. (2005).
c Agent et al. (1996).

without reporting the standard deviation. Using the Eq.
(3), we estimated this standard deviation to be 0.0205
(≈8.19 × 0.25/100).

Based on a thorough review of previous grade crossing stud-
es, we obtained a weighted average of the CMF and variance
or 18 different countermeasures. Table 3 summarizes these esti-
ates along with the number of studies or sources on which they

re based. These will be used to represent the historical informa-
ion or a priori belief as to the effectiveness of countermeasures
n the absence of any analyses involving the actual collision data.

Based on the results of these previous studies, the strongest
ountermeasure effects (excluding grade separation or closure)
s an upgrade in warning device from 2- to 4-Quadrant Gates
nd the installation of Photo/Video enforcement. Both counter-
easures are believed to reduce grade crossing collisions by
bout 75%. On the other hand, the weakest effect was found
or the introduction of yield signs ahead of grade crossings.
he expected collision reduction for this countermeasure was
stimated to be about 19%. For these results, a total of 91

g
t
i
m

able 3
stimated CMF and variance from the past studies

umber Countermeasures

1 Grade Separation/Closure
2 Yield Sign
3 Stop Sign
4 Stop Ahead Sign
5 Stop Line Sign
6 Illumination (Lighting)
7 Pavement Markings
8 From Signs to Flashing Lights
9 From Signs to 2Q-Gates
0 From Flashing Lights to 2Q-Gates
1 From 2Q-Gates to 2Q-Gates with Median Separation
2 From 2Q-Gates to 4Q-Gates
3 Installing Traffic Signal
4 Elimination of Whistle Prohibition
5 Improve Sight Distance
6 Improve Pavement Condition
7 Posted Speed Limit
8 Photo/Video Enforcement
ources were investigated to obtain a priori countermeasure
ffects (Saccomanno et al., 2006).

It should be noted here that the formal “Meta Analysis”
pproach proposed in literature to integrate findings from multi-
le studies also utilizes the same expression as Eqs. (2) and (4) to
stimate the weighted average and variance of existing findings
Hunter and Schmidt, 1990). But a major difference concerns
he estimation of relative study weights from previous studies.
urthermore, the “Meta Analysis” method requires a number of

nputs from each study, including sample size, published year,
mitted factors, and even the number of researchers. Recently,
hite (2002) attempted to represent the effectiveness of 30 dif-

erent safety countermeasures on the basis of Meta analysis;
owever, only 5 different countermeasures effects were obtained
ue to the lack of necessary input information. Unfortunately,
he input information required for a rigorous Meta analysis of

rade crossing countermeasure effects was not available from
he previous studies cited in Table 3. Our aim in this analysis
s to produce estimates of effectiveness for as many counter-

easures as possible; hence a formal Meta analysis was not

μ τ No. of previous studies

0.0000 0.0000 2
0.8100 0.0723 4
0.6467 0.0577 6
0.6533 0.0583 3
0.7200 0.0642 3
0.5625 0.0502 4
0.7914 0.0706 7
0.4578 0.1356 10
0.2833 0.0864 10
0.4738 0.1489 7
0.3375 0.0301 4
0.2540 0.0227 5
0.3583 0.1776 4
0.4671 0.0417 3
0.6630 0.0591 10
0.5200 0.0464 3
0.8000 0.0714 3
0.2471 0.0220 3

Sum = 91
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mployed in this study. The proposed approach remains practi-
able in that the priors can be easily updated or altered should
etter results become available from future studies concerning
pecific countermeasures.

Prior estimates may not be reliable because they are study spe-
ific and limited in reflecting the full gamut of crossing-specific
actors that we would expect to influence collisions at different
ocations in different jurisdictions. For this analysis, we require
n in-depth investigation of the relationship between crossing
ttributes and collisions as reflected in the Canadian database.
he estimated CMF from these collision prediction models best

epresents the “objective” or current information for grade cross-
ng collisions as well as attributes within Canadian jurisdictions.
rom the Bayesian perspective, we refer to this type of inference
s “data likelihood”.

In this study, we employed three different statistical models
ased on independent studies carried out by Saccomanno and
ai (2005) and Park and Saccomanno (2005a,b). These mod-
ls were developed for Canadian grade crossing data adopting
multi-stage cross-sectional approach to reduce many of prob-

ems associated with conventional cross-sectional models.
Saccomanno and Lai (2005) introduced a three-stage cross-

ectional model to predict collisions at grade crossings. They
rouped crossings into five different clusters with similar
ttributes based on sequential factor/cluster analyses and then
eveloped cluster-specific collision prediction models using
egative binomial expressions. Since crossing attributes within
ndividual clusters are assumed to be homogenous, the expected
hange in the number of collisions before and after the introduc-
ion of a given countermeasure can be used to assess its effect.

Park and Saccomanno (2005a) introduced a data partitioning
ethod (i.e. RPART) to eliminate the impact of different control

actors, which can influence collisions but are difficult for engi-
eers to alter directly (e.g. jurisdictional attributes). The model
ocuses on the impact of the countermeasures themselves. The
uthors assigned individual crossings into homogenous groups
f crossings in terms of selected control factors, and then devel-
ped a series of statistical models to predict collisions and
orresponding countermeasure effects.

Park and Saccomanno (2005b) attempted to introduce higher-
rder interaction terms in their prediction model, employing
data partitioning method to reflect higher-order interactions,
hich could not be captured using conventional cross-sectional
odels.
The three multi-stage data likelihood models based on the

forementioned three previous studies to produce data likeli-
oods are summarized in Tables 4–6 for each model, respec-
ively. Note that these collision prediction models all employ
egative binomial expressions (except Class 4 model in Table 5),
nd the exposure term in the models is expressed as the product
f the “number of daily trains” and “road volume (AADT)”.

.2. Posterior distribution
If the estimate from one of three data likelihood models
s given as x1 with probability P1(x1|θ), then we can esti-
ate the posterior distribution for this estimate from Eq. (1). Ta
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Table 5
Class-specific collision prediction models based on Park and Saccomanno model (2005a)

Variables Coding scheme Class 1 Class2 Class3 Class4 Overall Class

Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E.

Flashing lights (FL) FL = 1; Otherwise = 0 −0.677 0.147 −0.571 0.235 −0.983 0.131 – – −0.756 0.084
Gates (GT) GT = 1; Otherwise = 0 −0.899 0.185 −0.601 0.205 −1250 0.236 – – −1.004 0.114
Surface type If Paved = 1; Unpaved = 0 – – −0.254 0.155 -0.22 0.124 – – −0.112 0.067
Whistle prohibition (WP) IfWP = 1; Otherwise = 0 0.294 0.114 – – 0.827 0.174 1.409 0.780 0.373 0.085
Maximum train speed km/h 0.002 0.001 – – 0.007 0.002 0.011 0.005 0.004 0.001
Ln(Exposure) Ln(AADT × Daily Train) 0.345 0.030 0.358 0.048 0.366 0.033 0.290 0.077 0.355 0.020

CI01 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. −3.867 0.173
CI02 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. −4.004 0.172
CI03 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. −3.965 0.150
CI04 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. −4.388 0.169
Intercept −3.797 0.266 −3.821 0.368 −4.190 0.241 −4.789 0.421 n.a. n.a.
Dispersion (φ) 0.633 0.114 0.236 0.180 0.439 0.154 n.a. n.a. 0.543 0.082

Note: Class 1 represents the crossings at arterial or collector roads (NB model). Class 2 represents the crossings at local or other road types with multiple tracks (NB model). Class 3 represents the crossings at local
roads with single track (NB model). Class 4 represents the crossings at other road types with single track (Poisson model).

Table 6
Negative binomial collision prediction models with group indicators based on Park and Saccomanno model (2005b)

Variables Coding scheme Coefficient S.E.

Flashing lights (FL) FL = 1; Otherwise = 0 −0.728 0.096
Gates (GT) GT = 1; Otherwise = 0 −0.912 0.118

Maximum train speed (MTS) Medium level MTS: 36 < MTS < 92 km/h = 1; otherwise = 0 0.274 0.086
High level MTS: MTS > 92 km/h = 1; otherwise = 0 0.316 0.092

Ln(Exposure) Ln(AADT × Daily Train) 0.422 0.019
GI08 C11 takes value 1 if a crossing installed with active warning devices (flashing lights or gates), in arterial or collector or local roads,

with paved surface, with multiple track; Otherwise = 0
0.144 0.087

GI11 C11 takes value 1 if a crossing installed with signs, with medium level train speed, with non-perpendicular track angle; Otherwise = 0 0.409 0.127
GI13 C13 takes value 1 if a crossing installed with signs, with medium level train speed, with non-perpendicular track angle, with posted

speed under 85 km/h; Otherwise = 0
−0.234 0.140

Intercept −4.609 0.170
Dispersion (φ) 0.554 0.083
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Table 7
Sample Crossing Attributes for Example Applications

Variables Crossing attributes

Before After

Road surface width (ft) 15 15
Surface material Asphalt (Paved) Asphalt (Paved)
Road type Local Local
Track number Single Single
Track angle (degree) 70 70
Mainline or non-mainline Mainline Mainline
Average annual daily traffic (AADT) 15,000 15,000
Number of daily trains 12 12
Posted speed limit (km/h) 50 50
Maximum train speed (mile/h) 10 10
Whistlea Prohibited Operated
Warning devicesb Flashing lights Flashing lights
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or a different experiment with estimate of x2 with proba-
ility P2(x2|θ), we obtain the posterior probability as P(θ|x2,
1) ∝ P(θ)P2(x2|θ)P1(x1|θ). Generalizing this procedure for n
ifferent experiments, Migon and Gamerman (1999) derived the
xpression for the posterior probability as:

(θ|xn, xn−1, . . . , x1) ∝ P(θ)

[
n∏

i=1

Pi(xi|θ)

]
(5)

The technical challenge here is to obtain posterior probability
istributions by integrating multiple distributions as per Eq. (5).
rom Bayes’ theorem, if we assume normality in both the prior
θ ∼ N(μ, τ2)] and data likelihood distributions [l ∼ N(x, σ2)],
ee (2004) and Migon and Gamerman (1999) demonstrated that

t is possible to combine their means and variances analytically
o produce a normal posterior distribution for θ|x, with a mean
f μ0 and a variance of τ2

1 , where:

0 = ωμ + (1 − ω)x (6)

n which,

= τ−2

τ−2 + σ−2 ∈ (0, 1) (7)

2
1 = (τ−2 + σ−2)

−1
(8)

0 = (τ−2μ + σ−2x)τ2
1 (9)

The ω in Eq. (7) measures the relative information contained
n the prior with respect to its posterior distribution. As a result,
q. (6) yields the combined weighted means of prior and data

ikelihood.

. Example applications

To illustrate the application of the proposed data fusion
ethod, we consider the following two types of countermea-

ures:

. Introducing whistles at a crossing where whistles are cur-
rently prohibited.

. Upgrading warning devices from Flashing Lights to 2-
Quadrant Gates.

Table 7 summarizes the crossing attributes used in this numer-
cal example. Data likelihood countermeasure effects are esti-

ated using the three prediction models introduced above. In this
xample, we will report only on the results of the cluster/factor
nalysis model. This model requires that we first estimate factor
cores based on crossing attributes, and then use these scores to
ssign crossings to individual clusters (groupings of attributes).
o shorten the illustration, we will not describe how cluster
embership is determined for a specific crossing, but simply

ndicate which cluster is involved. In this analysis, the given

rossing belongs to Cluster 5 in both before and after counter-
easure states.
By applying the Cluster 5 collision prediction expression

from Table 4), we obtain the CMF estimate before and after

μ

s

a Countermeasure for the first example application.
b Countermeasure for the second example application.

he elimination of “whistle prohibition” as follows:

MFWO = E{Nai}
E{Nbi} = exp(0.807.0)

exp(0.807.1)
≈ 0.446

Based on the Saccomanno and Lai’s model, for Cluster 5
rossings we can expect a 55.4% reduction in collisions after
histle operations are introduced to this crossing.
By applying the delta method (Sampson, 2006; Xu and

ong, 2005), the variance of CMFWO can be approximated
y Var(CMFWO) = (CMFWO)2Var(β̂ai − β̂bi). In this particu-
ar example, the estimated variance is simply equal to the
quare of the estimated standard error of the coefficient cor-
esponding to the elimination of whistle prohibition (Table 4).
his becomes (0.164)2 ≈ 0.027. The approximated variance of
MFWO becomes (0.446)2 0.027 ≈ 0.005 (i.e. standard errors
0.073). As a result, the estimated CMFWO follows N(0.446,

.0732).
By applying the same procedure to expression for Cluster

in Table 5 we obtained second model estimates (i.e. N(0.437,
.0762)) for inputs into the data likelihood. However, we decided
ot use the third model in Table 6, since this model failed to
xplain variation in collision for this specific countermeasure
elimination of whistle prohibition). Inasmuch as we still have
wo point estimates, we can estimate the data likelihood distri-
ution. In fact, this situation illustrates one of the merits in the
roposed method. If we can estimate at least one CMF and its
orresponding variance, we can still produce the data likelihood
ssociated with a specific crossing and generate its posterior
istribution.

Since we obtained P1(x1|θ) = N(0.446, 0.0732), and
2(x2|θ) = N(0.437, 0.0762), the data likelihood can be estimated
sing Eqs. (8) and (9), such that:

2
1 = (0.073−2 + 0.076−2)

−1 ≈ 0.0532
0 = (0.076−20.437 + 0.073−20.446)0.0532 ≈ 0.442

As a result, the estimated data likelihood distribution for this
pecific crossing follows N(0.442, 0.0532), and this would repre-
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ent the objective or current best knowledge about the expected
ffectiveness of the elimination of whistle prohibition for this
pecific crossing. On the other hand, the subjective or historical
priori belief for the same countermeasure was given in Table 3
s N(0.467, 0.0422).

Consequently, given the prior (i.e. N(0.467, 0.0422)) and the
ata likelihood (i.e. N(0.442, 0.0532)) distributions, we can pro-
uce the posterior distribution by applying Eqs. (5), (8), and (9),
uch that:

2
1 = (0.042−2 + 0.053−2)

−1 ≈ 0.0332

0 = (0.042−20.467 + 0.053−20.442)0.0332 ≈ 0.457

If we wish to represent the contribution of the prior to the
osterior, we apply Eq. (7) to yield the relative information
arameter ω, such that:

= 0.042−2

0.042−2 + 0.053−2 ≈ 0.616

As a result, the expected reduction in collisions at this grade
rossing due to the elimination of whistle prohibition was esti-
ated to be approximately 55%. The contribution of prior infor-
ation (ω) to the posterior distribution [N(0.457, 0.0332)] was

stimated to be in the order of 62%.
The second countermeasure example discussed in this paper

eals with the introduction of 2-Quadrant Gates to a given
rossing currently equipped with Flashing Lights. All other fac-
ors are assumed constant. For this exercise we assumed that
he whistle prohibition is in effect for both types of warning
evices.

Three different point estimates were obtained for the data
ikelihood based on the three models: (1) N(0.402, 0.0952), (2)
(0.765, 0.1612), and (3) N(0.833, 0.0692). In Table 3, prior
istribution for this countermeasure was reported to be N(0.474,
.1492). By applying a series of Eqs. (5)–(9), we obtained
nal posterior result for this countermeasure, namely N(0.669,
.0502), for a value of ω equal to 0.111. This countermeasure
esulted in a 33.1% reduction in the expected number of colli-
ions with about 11.1% of this reduction being explained by the
rior distribution alone.

These results are interesting in that, for this specific crossing,
he elimination of whistle prohibition, which is usually treated as
supplementary countermeasure, produces higher safety bene-
ts than were obtained for the upgrade in warning device from
lashing Lights to Gates. Had we tried to infer the safety ben-
fits based solely on a priori belief, the effectiveness of these
wo countermeasures would be similar, both reflecting a 53%
eduction in collisions.

This result does not necessarily mean that the elimination of

histle prohibition yields higher safety dividends than a more

ostly installation of gates at crossings with flashing lights for all
rossings involved. We must view this result as being applicable
nly to this specific crossing of interest. The approach outlined
n this paper is useful in that it provides a tailored CMF for
pecific crossing attributes.

b
f
t

α

β
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. Impact of different type of distribution in Bayesian
ata fusion

In this study, we have employed normal density functions
o represent both of prior and posterior distributions. However
s was noted previously, the normal distribution is symmetri-
al and unbounded while the effectiveness of a countermeasure
ay follow a skewed distribution with values bounded within a

ertain range (e.g. between 0 and 1). In this section, we inves-
igated the impact of our normality assumption by assuming
beta distribution for both prior and data likelihood. Previous

esearchers (e.g. Clarke and Sarasua, 2003; Washington and Oh,
006) have suggested using a beta distribution to represent both
riors and posteriors because of its flexibility in representing a
ide range of distribution patterns. Law and Kelton (1991) also

ndicated that the beta distribution is very useful in exploring a
iven dataset in the absence of any specific information about
he dataset. One property of the beta distribution is that it must be
ounded over a given interval of likely values. In this study, the
eta distribution was defined over the range [0,1] for collision
eductions of 100 and 0%, respectively.

Since the purpose of our study is to produce a varying CMF
ased on grade crossing attributes rather than estimate the aver-
ge effectiveness of each countermeasure, an analytic method
as used to combine different beta prior and beta data likelihood

stimates.
The beta distribution was defined in terms of two shape

arameters α and β, both greater than zero (Iversen, 1984), such
hat:

r(X = x; α, β) = (α + β − 1)!

(α − 1)!(β − 1)!
Xα−1(1 − X)β−1 (10)

here,

= α

α + β
(i.e. mean of beta distribution) (11)

2 = μ(1 − μ)

α + β + 1

= αβ

(α + β)2(α + β + 1)
(i.e. variance of beta distribution)

(12)

y solving for α and β:

= μ

[
μ(1 − μ)

σ2 − 1

]
(13)

= [1 − μ]

[
μ(1 − μ)

σ2 − 1

]
(14)

As pointed out by Harlow et al. (1997), basic advantage of the
eta distribution is that the posterior beta parameters are additive
unctions of the beta prior and beta likelihood parameters, such

hat:

posterior = αprior + αdata likelihood (15)

posterior = βprior + βdata likelihood (16)
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Table 8
Sample mean and variance of prior and data likelihood

Prior Factor/cluster
model (D1)

Stratified model
(D2)

M
V

β

c

w
a
m

y

(

(

(

(

(
B
u

(

(

(

(

t
c
c

(

ean (μ) 0.467 0.446 0.437
ariance (σ2) 0.0422 0.0732 0.0762

After obtaining the posterior beta parameters (i.e. αposterior,
posterior), the mean and the variance of the posterior distribution
an be estimated using Eqs. (11) and (12).

In the previous numerical example for the elimination of
histle prohibition at a given crossing, estimates of the mean

nd variance of prior and data likelihood were obtained as sum-
arized in Table 8.
First, Eq. (5) and Eqs. (10)–(16) were applied to the data to

ield the beta data likelihood estimates of CMF, such that:

1) For the Saccomanno and Lai model (we call this D1):

αD1 = μD1

[
μD1(1 − μD1)

σ2
D1

− 1

]

= 0.446

[
0.446(1 − 0.446)

0.0732 − 1

]
≈ 20.240

βD1 = [1 − μD1]

[
μD1(1 − μD1)

σ2
D1

− 1

]

= [1 − 0.446]

[
0.446(1 − 0.446)

0.0732 − 1

]
≈ 25.140

2) For the Park and Saccomanno (a) model (we call this D2):

αD2 = μD2

[
μD2(1 − μD2)

σ2
D2

− 1

]

= 0.437

[
0.437(1 − 0.437)

0.0762 − 1

]
≈ 18.041

βD2 = [1 − μD2]

[
μD2(1 − μD2)

σ2
D2

− 1

]

= [1 − 0.437]

[
0.437(1 − 0.437)

0.0762 − 1

]
≈ 23.210

3) The αdatalikelihood and βdatalikelihood from Eqs. (15) and (16)
are:

αdata likelihood = 20.240 + 18.041 = 38.281

βdata likelihood = 25.140 + 23.210 = 48.350

4) To estimate the expected mean (x) and variance (σ2) of the
data likelihood distribution we use Eqs. (11) and (12), such

that:

xdata likelihood = 38.281

38.281 + 48.350
≈ 0.442
and Prevention 39 (2007) 406–416

σ2
data likelihood = 0.442(1 − 0.442)

38.281 + 48.350 + 1
≈ 0.0532

Since the beta distribution is assumed for the estimated prior
i.e. B(0.467, 0.0422)) and the estimated data likelihood (i.e.
(0.442, 0.0532)), the beta posterior distribution was obtained
sing the following steps:

1) Estimate αprior and βprior, as such:

αprior = μprior

[
μprior(1 − μprior)

σ2
prior

− 1

]

= 0.467

[
0.467(1 − 0.467)

0.0422 − 1

]
≈ 66.499

βprior = [1 − μprior]

[
μprior(1 − μprior)

σ2
prior

− 1

]

= [1 − 0.467]

[
0.467(1 − 0.467)

0.0422 − 1

]
≈ 75.853

2) αdata likelihood and βdata likelihood is already estimated 38.281
and 48.350, respectively.

3) Obtain αposterior and βposterior, as such:

αposterior = 66.499 + 38.281 = 104.780

βposterior = 75.853 + 48.350 = 124.200

4) Estimate the expected mean and variance of CMF, as such:

μposterior = 104.780

104.780 + 124.200
≈ 0.458

σ2
posterior = 0.458(1 − 0.458)

104.780 + 124.200 + 1
≈ 0.0332

As a result, the estimated CMF follows B(0.458, 0.0332).
Fig. 1 and Table 9 provide the results of a comparison between

he normal and beta cumulative posterior distributions and their
orresponding parameters, respectively. Several observations
an be made:

1) The two cumulative distributions are almost identical and
produce the same percentile values in the wide range of
CMF values. The 5, 25, 50, 75, and 95 percentile values
of the two distributions are estimated about 0.404, 0.435,

0.457, 0.480, and 0.512, respectively. As a result, there is a
5% of chance that the estimated CMF from the elimination
of whistle prohibition is under 0.404, suggesting more than a
60% reduction in collisions. Similarly, there is a 5% chance
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Table 9
Comparison between normal and beta posterior distribution

Distribution Statistics for each countermeasure Elimination of whistle prohibition Upgrading flashing lights to gates

Normal Mean (μ) 0.4574 (54.26)a 0.6693 (33.07)a

Beta 0.4576 (54.24)a 0.6181 (38.19)a

N 0.032
B 0.032
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a

ormal Standard errors (σ)
eta

a Represents the percentage value of the estimated collision reduction.

that we can obtain less than a 49% of reduction for the same
countermeasure.

2) Contrary to the elimination of whistle prohibition, notable
discrepancy is observed in the cumulative distribution asso-
ciated with the upgrading of warning devices from flashing
lights to gates. For instance, the 5th percentile value of CMF
based on the cumulative normal distribution is 0.588, rep-
resenting about a 41% reduction in collisions. The same
percentile value for the cumulative beta is 0.521, represent-
ing about a 48% reduction in collisions. The 95th percentile
values for the normal and beta cumulative distributions are
estimated to be 0.751 (i.e. a 25% collision reduction) and
0.711 (i.e. a 29% collision reduction), for the normal and
beta cumulative distributions, respectively. If we determine
the CMF estimates based on the normal rather than the beta
to represent the effectiveness of the upgrade from flashing
lights to gates, a more conservative (lower safety benefit)

result would be obtained.

Some countermeasures, such as Photo/Video enforcement,
ave not been introduced in Canadian inventory data, as a result,

ig. 1. Cumulative density functions based on the two different distributions: (a)
MF for the elimination of whistle prohibition and (b) CMF for the upgrading

rom flashing lights to gates.

c

(

(

(

(

(

(

7 0.0496
9 0.0576

e could not make any inference from data likelihood. In this
ase, instead of employing Bayesian data fusion we recommend
elying on the priors to represent full countermeasure effects.
his would be appropriate until we obtain additional data like-

ihood inferences for this countermeasure. In a similar vein, if
e do not have a priori knowledge about a given countermea-

ure (e.g. changes in train operating speeds) but we have current
nowledge from the data, we can produce estimates of counter-
easure effects based on the data likelihood estimates alone.

. Conclusions

Bayesian data fusion requires two important sources of infor-
ation to obtain statistical estimates of countermeasure effects, a

riori and data likelihood inputs. The approach suggested in this
aper has a number of practical advantages for guiding decisions
s to the merits of different countermeasures applied to specific
rossings:

1) It integrates results from previous studies of countermeasure
effects with direct analysis of Canadian crossings collision
experience, using a formal Bayesian data fusion procedure.

2) It incorporates previous CMF findings from different model
sources by systematically weighting the estimates on the
basis of published model reliability. The use of weights
contributes to more sound prior estimate of countermeasure
effects, based on engineering experience.

3) It allows for the adoption of different probability distribu-
tions for representing priors and data likelihoods. The use
of normal and beta distribution in this study yielded modest
differences in CMF for the upgrade in warning devices at the
example crossing. To generalize this finding more research
is required.

4) Inasmuch as we used three different collision prediction
models to obtain data likelihood estimates for the Canadian
data, the proposed method yields countermeasure effects
that are more reflective of a larger array of factors than
is possible from a single model. This reduces problems of
mis-specification commonly associated with these types of
models.

5) The proposed model provides tailored information about the
effect of countermeasures for specific crossings of interest.
This method employs data likelihood as an input, based on

a series of collision prediction models developed for the
Canadian collision database.

6) The model formally recognizes uncertainty in the esti-
mated countermeasure effects. Output is reported in terms
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of means, variance, and corresponding probability distribu-
tions.

In summary, the Bayesian data fusion method proposed in this
aper has several advantages especially for evaluating counter-
easure effects at different levels of aggregation from individual

rossings to a given region. It provides a promising tool for engi-
eers to make informed and objective safety decisions in the face
f uncertainty.
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